3.985 \(\int \frac{x}{(a+b x^2)^{5/2} \sqrt{c+d x^2}} \, dx\)

Optimal. Leaf size=74 \[ \frac{2 d \sqrt{c+d x^2}}{3 \sqrt{a+b x^2} (b c-a d)^2}-\frac{\sqrt{c+d x^2}}{3 \left (a+b x^2\right )^{3/2} (b c-a d)} \]

[Out]

-Sqrt[c + d*x^2]/(3*(b*c - a*d)*(a + b*x^2)^(3/2)) + (2*d*Sqrt[c + d*x^2])/(3*(b*c - a*d)^2*Sqrt[a + b*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0438094, antiderivative size = 74, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {444, 45, 37} \[ \frac{2 d \sqrt{c+d x^2}}{3 \sqrt{a+b x^2} (b c-a d)^2}-\frac{\sqrt{c+d x^2}}{3 \left (a+b x^2\right )^{3/2} (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[x/((a + b*x^2)^(5/2)*Sqrt[c + d*x^2]),x]

[Out]

-Sqrt[c + d*x^2]/(3*(b*c - a*d)*(a + b*x^2)^(3/2)) + (2*d*Sqrt[c + d*x^2])/(3*(b*c - a*d)^2*Sqrt[a + b*x^2])

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*Simplify[m + n + 2])/((b*c - a*d)*(m + 1)), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rubi steps

\begin{align*} \int \frac{x}{\left (a+b x^2\right )^{5/2} \sqrt{c+d x^2}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{(a+b x)^{5/2} \sqrt{c+d x}} \, dx,x,x^2\right )\\ &=-\frac{\sqrt{c+d x^2}}{3 (b c-a d) \left (a+b x^2\right )^{3/2}}-\frac{d \operatorname{Subst}\left (\int \frac{1}{(a+b x)^{3/2} \sqrt{c+d x}} \, dx,x,x^2\right )}{3 (b c-a d)}\\ &=-\frac{\sqrt{c+d x^2}}{3 (b c-a d) \left (a+b x^2\right )^{3/2}}+\frac{2 d \sqrt{c+d x^2}}{3 (b c-a d)^2 \sqrt{a+b x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0161268, size = 52, normalized size = 0.7 \[ \frac{\sqrt{c+d x^2} \left (3 a d-b c+2 b d x^2\right )}{3 \left (a+b x^2\right )^{3/2} (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x/((a + b*x^2)^(5/2)*Sqrt[c + d*x^2]),x]

[Out]

(Sqrt[c + d*x^2]*(-(b*c) + 3*a*d + 2*b*d*x^2))/(3*(b*c - a*d)^2*(a + b*x^2)^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 60, normalized size = 0.8 \begin{align*}{\frac{2\,d{x}^{2}b+3\,ad-bc}{3\,{a}^{2}{d}^{2}-6\,cabd+3\,{b}^{2}{c}^{2}}\sqrt{d{x}^{2}+c} \left ( b{x}^{2}+a \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(b*x^2+a)^(5/2)/(d*x^2+c)^(1/2),x)

[Out]

1/3*(d*x^2+c)^(1/2)*(2*b*d*x^2+3*a*d-b*c)/(b*x^2+a)^(3/2)/(a^2*d^2-2*a*b*c*d+b^2*c^2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^2+a)^(5/2)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.43684, size = 261, normalized size = 3.53 \begin{align*} \frac{{\left (2 \, b d x^{2} - b c + 3 \, a d\right )} \sqrt{b x^{2} + a} \sqrt{d x^{2} + c}}{3 \,{\left (a^{2} b^{2} c^{2} - 2 \, a^{3} b c d + a^{4} d^{2} +{\left (b^{4} c^{2} - 2 \, a b^{3} c d + a^{2} b^{2} d^{2}\right )} x^{4} + 2 \,{\left (a b^{3} c^{2} - 2 \, a^{2} b^{2} c d + a^{3} b d^{2}\right )} x^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^2+a)^(5/2)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

1/3*(2*b*d*x^2 - b*c + 3*a*d)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)/(a^2*b^2*c^2 - 2*a^3*b*c*d + a^4*d^2 + (b^4*c^2
- 2*a*b^3*c*d + a^2*b^2*d^2)*x^4 + 2*(a*b^3*c^2 - 2*a^2*b^2*c*d + a^3*b*d^2)*x^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\left (a + b x^{2}\right )^{\frac{5}{2}} \sqrt{c + d x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x**2+a)**(5/2)/(d*x**2+c)**(1/2),x)

[Out]

Integral(x/((a + b*x**2)**(5/2)*sqrt(c + d*x**2)), x)

________________________________________________________________________________________

Giac [B]  time = 1.23678, size = 174, normalized size = 2.35 \begin{align*} \frac{4 \,{\left (b^{2} c - a b d - 3 \,{\left (\sqrt{b x^{2} + a} \sqrt{b d} - \sqrt{b^{2} c +{\left (b x^{2} + a\right )} b d - a b d}\right )}^{2}\right )} \sqrt{b d} b^{2} d}{3 \,{\left (b^{2} c - a b d -{\left (\sqrt{b x^{2} + a} \sqrt{b d} - \sqrt{b^{2} c +{\left (b x^{2} + a\right )} b d - a b d}\right )}^{2}\right )}^{3}{\left | b \right |}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^2+a)^(5/2)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

4/3*(b^2*c - a*b*d - 3*(sqrt(b*x^2 + a)*sqrt(b*d) - sqrt(b^2*c + (b*x^2 + a)*b*d - a*b*d))^2)*sqrt(b*d)*b^2*d/
((b^2*c - a*b*d - (sqrt(b*x^2 + a)*sqrt(b*d) - sqrt(b^2*c + (b*x^2 + a)*b*d - a*b*d))^2)^3*abs(b))